STEM-Integrated, Modified 7-E Learning Plan Template

CHALLENGE, PROBLEM or PROJECT:	To use a microcontroller in the design of a sensor, actuator, or servo circuit that addresses a practical need or communicates a particular theme or message.	
UNIT:		
MATH/SCIENCE/ TECHNOLOGY CONNECTIONS:	 Numbers and Number Sense Computation and Estimation Measurement and Geometry Patterns, Functions and Algebra Program Design Scientific Investigation, Reasoning, and Logic Force Motion and Energy Basic Principles of Electricity Experimental Design and Product Design Basic Electrical Circuits Engineering Design Processes 	
AUTHOR(S):	YourName, Egenrieder, Sabarre, Bowers	

Stage 1 - Desired Results

Established Goals:

Identify and draw the components of a basic circuit; Identify the purpose, components, and applications of microcontrollers; identify the four standard parts of computer program; prepare a computer program from a blank template; and create a device with the circuit and program developed.

Prior Knowledge Needed (include vocabulary): Series and parallel circuits, simple fractions, degrees of a circle, clockwise and counterclockwise

Objectives to be addressed in this lesson: (include specific competencies, Standards, and language objectives) **Math SOL's**

- Numbers and Number Sense (4.1, 4.2, 5.2, 6.2, 6.3,
- Computation and Estimation (4.4, 4.5, 5.4, 6.5, 6.6,
- Measurement and Geometry (4.8, 5.9, 5.11, 5.12, G.10)
- Patterns, Functions and Algebra (4.15, 5.18, 5.19
- Program Design (COM.2; COM.7; COM.8)

Science SOL's

- Scientific Investigation, Reasoning, and Logic (4.1 b, c, d, l, and m; 6.1 i; LS.1 c,d,f, PS.1 d; ES.1 b, Bio.1 i; CH.1 h)
- Force Motion and Energy (4.3 a, b, d, f)
- Basic Principles of Electricity (PS.11 a, c, d)
- Experimental Design and Product Design (PH.1 d,f,g)
- Basic Electrical Circuits (PH.11 a, b, c, d)

Technology

٠

Enduring Understandings: Participants will understanding that:	Essential Questions:
1.	1.
2.	2.

Language Objectives

Reading: Preparation, review

Listening: Initial instructions, collaborating

Speaking: Summarizing, mentoring, asking questions

Writing: Documentation, sharing and reporting, summarizing

Key vocabulary:

Stage 2 - Assessment Evidence

(Include both Formative and Summative Assessments.)

Performance Tasks:	Other Evidence:
Students will develop skills in	Students will be evaluated on:
(1)	•
(2)	•
(3)	•
(4)	•
(5)	•
(6)	•

Stage 3 - STEM-Integrated Learning Activities / Instruction

Lesson Elements	Teacher Notes
7E Model	(and resources)
1. ENGAGE Introduce the lesson using the <i>Challenge Question</i> as the HOOK.	
2. ELICIT Students identify what they NEED TO KNOW/KNOW/HOW TO FIND OUT to solve the Challenge.	Design Process Step: Identify the problem.
3. EXPLORE Students build an understanding of knowledge/skills related to specific topics within the standards-based curriculum.	Design Process Step: Criteria and Constraints
4. EXPLAIN Students share findings from EXPLORATIONS and determine what knowledge/skills will help solve the <i>Challenge</i> .	Design Process Step: Brainstorm solutions and pick one.
5. ELABORATE Using what was learned, solve the design challenge.	Design Process Step: Build a model or prototype. Design Process Step: Test your solution. Design Process Step: Re-design and re-test.
6. EVALUATE Students demonstrate their understanding with presentations or published students' products. A variety of formative and summative assessments are used to evaluate student understanding. STEM Notebooks provide ongoing assessment.	Design Process Step: Share your solution.
7. EXTEND Students make connections to other real-world problems. STEM Career connections are made.	

DIFFERENTIATION

Accommodations:

Other support:

- Remediation
- Enrichment or early finishers
- Various learning styles
- Limited English proficiency

OTHER INTEGRATION (Interdisciplinary Connections)

(Include any overlapping concepts and big ideas from other disciplines. Delete the rest.)

- Language Arts:
- Math:
- Science:
- Social Sciences:
- Health/PE
- World Languages:
- Economics/Finance:
- Other Technical, Technology or Engineering:
- Entrepreneurship or Business:
- Visual or Performing Arts:

WRAP-UP (Closure and links to next lesson)

(Review enduring understanding(s), essential questions.)

TEACHER REFLECTION

- How much time was spent at each level on the Gradual Release of Responsibility chart?
 - WE DO IT TOGETHER
 - YOU DO IT WITH PEERS
 - YOU DO IT ALONE OR DO SOMETHING NEW
- Were my students engaged throughout the lesson?
- Did the students respond to "How" and "Why" questions?

- Did my students have an opportunity to discuss and/or write about the topic?
- What changes would I make next time the lesson is taught?
- What steps do I need to take next in this topic? Are there areas that need re-teaching?